Let $0\neq a,b\in \mathbb{Z}$. there are integers $p,q$ such that $0\leq r
My attempt:
$$\text{gcd}(a,b)=\varphi$$
So
$$\exists \,m,n \in \mathbb{Z}\,\,\,\,\,\;\;\;\;\;\;\;\;\;\varphi=ma+nb$$
$$\text{gcd}(b,r)=\psi$$
So
$$\exists \,m,n \in \mathbb{Z}\,\,\,\,\,\;\;\;\;\;\;\;\;\;\psi=mb+nr$$
We know that $a=bq+r$ so $r=a-bq$
So gcd$(b,\underbrace{a-bq}_{=r})=\psi=mb+n(\underbrace{a-bq}_{=r})=$
I'm stuck here, and I don't know if my attempt is correct or not
Answer
You have to use the fact that the gcd is the smallest linear combination.
Suppose $(a,b)=ma+nb$. Then $(a,b)=m(bq+r)+nb = mr+(qm+n)b$.
Similarly, if $(b,r)=m'b+n'r$ then $(b,r) = m'b+n'(a-bq) = n'a + (m'-n'q)b$.
Therefore you know that $(a,b)$ divides $(b,r)$ and $(b,r)$ divides $(a,b)$
No comments:
Post a Comment