Sunday, 10 August 2014

How does the complex exponential function transform the unit circle?

I know you can write every complex number on the unit circle as $e^{i\theta} = \cos(\theta)+i\sin(\theta).$ But what does it look like when you raise $e$ to the values? You get $e^{\cos(\theta)+i\sin(\theta)} = e^{\cos(\theta)}(\cos(\sin(\theta)) + i\sin(\sin(\theta))),$ but I'm having trouble visualizing this.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...