Friday, 8 August 2014

limits - limlimitsntoinftysqrt1+sqrtfrac122+sqrtfrac132+cdots+sqrtfrac1n2.

Evaluate lim where

T_n=\sqrt{1+\sqrt{\frac{1}{2^2}+\sqrt{\frac{1}{3^2}+\cdots+\sqrt{\frac{1}{n^2}}}}}.





It's obvious that T_n is increasing with a greater n, since
\begin{align*} T_{n+1}&=\sqrt{1+\sqrt{\frac{1}{2^2}+\sqrt{\frac{1}{3^2}+\cdots+\sqrt{\frac{1}{n^2}+\sqrt{\frac{1}{(n+1)^2}}}}}}\\ &>\sqrt{1+\sqrt{\frac{1}{2^2}+\sqrt{\frac{1}{3^2}+\cdots+\sqrt{\frac{1}{n^2}+0}}}}\\ &=T_n. \end{align*}




Moreover, we can prove that T_n is bounded upward, since
\begin{align*} T_n&=\sqrt{1+\sqrt{\frac{1}{2^2}+\sqrt{\frac{1}{3^2}+\cdots+\sqrt{\frac{1}{n^2}}}}}\\ &\leq \sqrt{1+\sqrt {1+\sqrt{1+\cdots+\sqrt{1}}}} \\ &\to \frac{\sqrt{5}+1}{2}. \end{align*}
Therefore, T_n is convergent as n \to \infty, by the monotonicity convergence theorem.



But where does it converge to on earth? Does the limit have a excact value? I have already computed the value using the former 20 terms by Mathematica, it output:

enter image description here

No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...