Sunday, 10 July 2016

calculus - Solving the improper integral $int_0^{infty}frac{dx}{1+x^3}$



$$\int_0^{\infty} \frac{dx}{1+x^3}$$



So far I have found the indefinite integral, which is:



$$-\frac{1}{6} \ln |x^2-x+1|+\frac{1}{\sqrt{3}} \arctan\left(\frac{2x-1}{\sqrt{3}}\right)+\frac{1}{3}\ln|x+1|$$




Now what do I need to do in order to calculate the improper integral?


Answer



Next, simplify
$$
F(x)=-\frac{1}{6}\ln|x^2-x+1|+\frac{1}{\sqrt{3}}\arctan{\frac{2x-1}{\sqrt{3}}}+\frac{1}{3}\ln|x+1|
$$
$$
=\frac{1}{\sqrt{3}}\arctan\left(\frac{2x-1}{\sqrt{3}}\right)+\frac{1}{3}\ln|x+1|-\frac{1}{3}\ln\sqrt{|x^2-x+1|}
$$

$$
=\frac{1}{\sqrt{3}}\arctan\left(\frac{2x-1}{\sqrt{3}}\right)+\frac{1}{3}\ln\left(\frac{|x+1|}{\sqrt{|x^2-x+1|}}\right).
$$
Then
$$\int_0^\infty \frac{dx}{1+x^3}=\lim_{X\rightarrow\infty}F(X)-F(0).$$
Compute the limit, and you are done.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...