$$\sin x
ps:
By differentiation, monotonicity and Taylor formula, all are wrong, because $(\sin x)'=\cos x$ must use $\lim_{x \to 0}\frac{\sin x}{x}=1$, and this formula must use $\sin x< x$. This is vicious circle.
If we use Taylor series of $\sin x$ to define $\sin x$, strictly prove $\sin x
Answer
We can define $\sin x$ as power series. Applying the knowledge of power series, obtain the derivative of $\sin x$, and then we will easy prove the inequality. Concluding geometry of $\sin x$, please refer to this.
No comments:
Post a Comment