Evaluate
$$ \lim_{x\to \pi/2} \frac{\sqrt{1+\cos(2x)}}{\sqrt{\pi}-\sqrt{2x}}$$
I tried to solve this by L'Hospital's rule..but that doesn't give a solution..appreciate if you can give a clue.
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment