For all $a, m, n \in \mathbb{Z}^+$,
$$\gcd(a^n - 1, a^m - 1) = a^{\gcd(n, m)} - 1$$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment