Thursday, 25 August 2016

elementary number theory - Prove that $gcd(a^n - 1, a^m - 1) = a^{gcd(n, m)} - 1$

For all $a, m, n \in \mathbb{Z}^+$,



$$\gcd(a^n - 1, a^m - 1) = a^{\gcd(n, m)} - 1$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...