Sunday, 28 August 2016

limits - Is the sequences${S_n}$ convergent?

Let $$S_n=e^{-n}\sum_{k=0}^n\frac{n^k}{k!}$$



Is the sequences$\{S_n\}$ convergent?



The following is my answer,but this is not correct. please give some hints.



For all $x\in\mathbb{R}$, $$\lim_{n\rightarrow\infty}\sum_{k=0}^n\frac{x^k}{k!}=e^x.$$
then




$$\lim_{n\rightarrow\infty}e^{-n}\sum_{k=0}^n\frac{n^k}{k!}=1.$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...