Let $$S_n=e^{-n}\sum_{k=0}^n\frac{n^k}{k!}$$
Is the sequences$\{S_n\}$ convergent?
The following is my answer,but this is not correct. please give some hints.
For all $x\in\mathbb{R}$, $$\lim_{n\rightarrow\infty}\sum_{k=0}^n\frac{x^k}{k!}=e^x.$$
then
$$\lim_{n\rightarrow\infty}e^{-n}\sum_{k=0}^n\frac{n^k}{k!}=1.$$
No comments:
Post a Comment