Tuesday, 23 August 2016

linear algebra - How to find eigenvalues of the matrix

This is a question from our end-semester exam:




How to find the eigenvalues of the given matrix:




M=\begin{bmatrix}
5,1,1,1,1,1\\
1,5,1,1,1,1\\
1,1,5,1,1,1\\

1,1,1,5,1,1\\
1,1,1,1,4,0\\
1,1,1,1,0,4\\
\end{bmatrix}



I know that $4$ is an eigenvalue of $M$ with multiplicity atleast $3$ since $M-4I$ has $4$ identical rows.



Is there any way to find all eigenvalues of this matrix? I could find only $3$ out of $6$.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...