Sunday, 21 August 2016

Complex contour integration of $frac{e^{iz}}{z}$

While calculating $\int_0^\infty \frac{\sin(x)}{x} dx $ I integrated the complex function $f(z) = \frac{e^{iz}}{z}$ over the contour $C = [-R,R] \cup \gamma_R $. $\gamma_R = R e^{it}$ where $0 \leq t \leq \pi$. I had some trouble to show that $\int_{\gamma_R} f(z) \rightarrow 0$ as $R \rightarrow \infty$. Is it possible to show this without using Jordan's Lemma but instead using the ML estimate?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...