Wednesday, 31 August 2016

geometry - How to prove $cosleft(piover7right)-cosleft({2pi}over7right)+cosleft({3pi}over7right)=cosleft({pi}over3 right)$



Is there an easy way to prove the identity?





$$\cos \left ( \frac{\pi}{7} \right ) - \cos \left ( \frac{2\pi}{7} \right ) + \cos \left ( \frac{3\pi}{7} \right ) = \cos \left (\frac{\pi}{3} \right )$$




While solving one question, I am stuck, which looks obvious but without any feasible way to approach.



Few observations, not sure if it would help
$$
\begin{align}

\dfrac{\dfrac{\pi}{7}+\dfrac{3\pi}{7}}{2} &= \dfrac{2\pi}{7}\\\\
\dfrac{\pi}{7} + \dfrac{3\pi}{7} + \dfrac{2\pi}{7} &= \pi - \dfrac{\pi}{7}
\end{align}
$$


Answer



Yes, This problem in 1963 IMO.http://www.artofproblemsolving.com/Forum/viewtopic.php?p=346908&sid=8ad587e18dd5fa9dd5456496a8daadfd#p346908


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...