Wednesday, 3 August 2016

integration - $int cos^5(x) dx$ with reduction formula



I'm trying to calculate $$\int cos^5(x)dx$$ with the reduction formula.



$$\int cos^5(x)dx=\frac{1}{5}cos^4(x)sin(x)+\frac{4}{5}\int cos^3(x)dx$$
then
$$\int cos^3(x)dx=\frac{1}{3}cos^2(x)sin(x)+\frac{2}{3}\int cos(x)dx$$

so
$$\int cos^5(x)dx=\frac{1}{5}cos^4(x)sin(x)+\frac{4}{5}(\frac{1}{3}cos^2(x)sin(x)+\frac{2}{3}sin(x))$$



But this looks different from:



$$\frac{1}{5}sin^5(x)-\frac{2}{3}sin^3(x)+sin(x)$$



given by:



https://www.symbolab.com/solver/step-by-step/%5Cint%20cos%5E%7B5%7D%5Cleft%28x%5Cright%29dx/?origin=button



Answer



Converting the cosines in your answer to sines via the pythagorean identity, $\cos ^2x=1-\sin ^2x$ yields:



$\frac{1}{5}\cos^4(x)\sin(x)+\frac{4}{5}(\frac{1}{3}\cos^2(x)\sin(x)+\frac{2}{3}\sin(x))$
$=\frac{1}{5}(1-\sin^2(x))^2\sin(x)+\frac{4}{5}(\frac{1}{3}(1-\sin^2(x))\sin(x)+\frac{2}{3}\sin(x))$



Simplifying from there:



$=\frac{1}{5}(1-2\sin^2(x)+\sin^4(x))\sin(x)+\frac{4}{5}(\frac{1}{3}\sin(x)-\frac{1}{3}\sin^3(x))+\frac{2}{3}\sin(x))$




$=\frac{1}{5}\sin(x)-\frac{2}{5}\sin^3(x)+\frac{1}{5}\sin^5(x)+\frac{4}{15}\sin(x)-\frac{4}{15}\sin^3(x))+\frac{8}{15}\sin(x)$



$=\frac{1}{5}\sin^5(x)-\frac{2}{3}\sin^3(x)+\sin(x)$



Which agrees with the answer from the solver.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...