Monday, 8 August 2016

measure theory - $lim_{ntoinfty}int f_n dmu=0$ implies that $f_n to 0$ a.e $mu$

Let $(X,F,\mu)$ be finite measure space.




Let $f_n$ be sequence of measurable function from $X$ and $f_n\geq 0$ almost everywhere $\mu$.



Claim.



If $\lim_{n\to 0}$$\int_X f_n d\mu=0$, then $f_n$ converges to $0$ a.e $\mu$?



Intutively It's true.



Can you help me?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...