Friday, 5 August 2016

real analysis - If a function is continuous and differentiable everywhere is the derivative continuous?



Suppose $f$ is continuous on $[a,b]$ and differentiable on (a,b). Does it follow that $f'$ is continuous on $(a,b)$?


Answer



The function,



$$f(x)=\begin{cases}
x^2\sin\frac{1}{x} & \text{ if } x\neq 0 \\
0 & \text{ if } x= 0

\end{cases}$$



is diffrentiable on $\mathbb{R}$



But,



$$f'(x)=\begin{cases}
2x\sin\frac{1}{x}-\cos\frac{1}{x} & \text{ if } x\neq 0 \\
0 & \text{ if } x= 0
\end{cases}$$




Is not continuous on $x=0$, since $\lim_{x\to 0}\cos\frac{1}{x}$ is not exist.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...