Sunday, 7 August 2016

What is the sum of the series 1/3 + 2/9 + 3/27 + 4/81 + ........




I remember solving this in highschool , but now I don't remember how to find sum of these kind of series .




I want to find the sum of the general series



Sum $\sum_{n=1}^{\infty} n .a^{-n} = ? $



and $\sum_{n=1}^{N}n. a^{-n} = ? $


Answer



Here is an approach that relies on the relationships (i) $k=\sum_{\ell=1}^k(1)$ and (ii) $\sum_{k=\ell}^N r^k=\frac{r^{\ell}-r^{N+1}}{1-r}$ for $|r|<1$. Then, with $r=3^{-1}$ we have



$$\begin{align}

\sum_{k=1}^N \frac{k}{3^k}&=\sum_{k=1}^N 3^{-k}\sum_{\ell =1}^k(1)\\\\
&=\sum_{\ell =1}^N \sum_{k=\ell}^N 3^{-k}\\\\
&=\sum_{\ell =1}^N \frac{3^{-\ell}-3^{-(N+1)}}{1-1/3}\\\\
&=\frac32 \sum_{\ell =1}^N \left(3^{-\ell}-3^{-(N+1)}\right)\\\\
&=\frac 32\left(\frac{3^{-1}-3^{-(N+1)}}{1-1/3}\right)-\frac N2 3^{-N}\\\\
&=\frac34 -\frac34 3^{-N}-\frac12 N3^{-N}
\end{align}$$



Note as $N\to \infty$ the sum of interest approaches $3/4$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...