Monday, 26 June 2017

calculus - Evaluate integral



How do I evaluate the following integral, the answer according to Wolfram Alpha is $2$, but I keep on getting $0$ after using integration by parts.$$\frac12\int_{-\infty}^\infty x^2e^{-|x|}\ dx$$


Answer



$$\frac12\int_{-\infty}^\infty x^2e^{-|x|}dx
= \frac12\int_{-\infty}^0x^2e^{x}dx +\frac12\int_{0}^\infty x^2e^{-x}dx
\\

= \int_{0}^\infty x^2e^{-x}dx = [x^2(-e^{-x})]_{0}^\infty + 2\int_{0}^\infty xe^{-x} dx
\\
=0+ 2[x(-e^{-x})]_{0}^\infty + 2\int_{0}^\infty e^{-x}dx = 0+0+2[(-e^{-x})]_{0}^\infty =2
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...