Saturday, 17 June 2017

number theory - Prove that $m^{2013}-m^{20}+m^{13}-2013$ has at least $N$ prime divisors



for positive integer $N>1$,There always exists $m$ such that
$$m^{2013}-m^{20}+m^{13}-2013$$
has at least $N$ prime divisors




Thank you all, this is good problem, but I don't know how to solve it.


Answer



The following solution deliberately avoids finding the prime factorization of $2013$, thanks to the rather generous exponents occuring in the given expression.



Let's introduce the $p$-adic valuation: If $p\in\mathbb P$ is a prime and $n\in\mathbb Z\setminus\{0\}$ let $v_p(n)$ denote the exponent of $p$ in $n$, that is $v_p(n)=\max\{r\in\mathbb Z: p^r|n\}$. For convenience, $v_p(0)=+\infty$. Then $$\tag1v_p(ab)=v_p(a)+v_p(b)$$ and $$\tag2v_p(a\pm b)\ge\min\{v_p(a),v_p(b)\}$$ and more specifically
$$\tag3v_p(a\pm b)=\min\{v_p(a),v_p(b)\}\quad \text{if }v_p(a)\ne v_p(b).$$
Right from $2013<2^{11}$ we get the (awfully crude) estimate
$$\tag4 v_p(2013)<11\quad\text{for all }p\in\mathbb P.$$
Let

$$S=\{p\in\mathbb P\mid\exists m\colon m^{2013}-m^{20}+m^{13}-2013\equiv 0\pmod p\}$$ be the set of primes occuring as prime divisors of the considered expression.
For example, $$\tag5 p\in\mathbb P,\, p|2013\implies p\in S$$ follows from considering $m=0$.



Assume that the set $S$ is finite.
Let $$M=\prod_{p\in S}p.$$




  • If $p$ is a prime $\notin S$, then $v_p(M^{2013}-M^{20}+M^{13}-2013)=0$ by definition of $S$ and also $v_p(2013)=0$ because of $(5)$.

  • And for $p\in S$, we have $v_p(M^{2013}-M^{20}+M^{13})\ge 13v_p(M)\ge 13>v_p(2013)$ from $(1)$, $(2)$, and $(4)$; hence $v_p(M^{2013}-M^{20}+M^{13}-2013)=v_p(2013)$ by $(3)$.




Thus $v_p(M^{2013}-M^{20}+M^{13}-2013)=v_p(2013)$ for all primes $p$. This implies $$M^{2013}-M^{20}+M^{13}-2013=\pm2013.$$
But from $(5)$ we have $S\ne\emptyset$, i.e. $M\ge 2$ and hence $$\begin{align}M^{2013}-M^{20}+M^{13}-2013&=(M^{1993}-1)M^{20}+M^{13}-2013\\&>M^{13}-2013\ge2^{13}-2013>2013,\end{align}$$ contradiction!
We conclude from this contradiction that the set $S$ is infinite.



Given $N$, we can therefore select $N$ distinct primes $p_k\in S$, $k=1,\ldots, N$.
For each $k$, there exists $m_k\in\mathbb Z$ such that $m_k^{2013}-m_k^{20}+m_k^{13}-2013\equiv 0\pmod{p_k}$.
Using the Chinese remainder theorem, there exists $m\in\mathbb N$ such that $m\equiv m_k\pmod{p_k}$ for all $k$. Then
$$ m^{2013}-m^{20}+m^{13}-2013\equiv m_k^{2013}-m_k^{20}+m_k^{13}-2013\equiv 0\pmod{p_k},$$
i.e. at least the $N$ different primes $p_k$ are divisors of $ m^{2013}-m^{20}+m^{13}-2013$.







Remark: The same argument works with any expression of the form $m^rf(m)+c$, where $f$ is a polynomial and $c$ is not divisible by any $r$th prime power and $f(m)\ge1$ if $m\ge \prod_{p|c}p$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...