Saturday 24 June 2017

definite integrals - Integrating $displaystyleint_0^{pi/2} {sin^2x over 1 + sin xcos x}dx$



We need to evaluate $\displaystyle \int_0^{\pi/2} {\sin^2x \over 1 + \sin x\cos x}dx$
and some solution to this starts as,




$\displaystyle\int_0^{\pi/2} {\sin^2x \over 1 + \sin x\cos x}dx =
\int_0^{\pi/2} {\{\sin(\pi/2 -x)\}^2 \over 1 + \sin (\pi/2 -x)\cos (\pi/2 -x)}dx$.



We fail to understand how this step has been carried out. Even variable substitution
does not seem to work.



Do you think that you could give us a hint?


Answer



Using $\displaystyle\int_a^bf(x)\ dx=\int_a^bf(a+b-x)\ dx,$




$\displaystyle I=\int_0^\frac\pi2\frac{\sin^2x}{1+\sin x\cos x}dx=\int_0^\frac\pi2\frac{\cos^2x}{1+\sin x\cos x}dx$



$\displaystyle2I=\int_0^\frac\pi2\frac1{1+\sin x\cos x}dx=\int_0^\frac\pi2\frac{\sec^2x}{1+\tan^2x+\tan x}dx$



Setting $\tan x=u$



$\displaystyle2I=\int_0^\infty\frac{dt}{1+t+t^2}=4\int_0^\infty\frac{dt}{(2t+1)^2+(\sqrt3)^2}$



Set $2t+1=\sqrt3\tan\theta$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...