Wednesday, 21 June 2017

Limit of $5cdot (tan x)^{sin x}$ at $0^+$, and indeterminate forms

I am looking for the right hand limit
$$
\lim_{x\to 0^+} 5\cdot (\tan x)^{\sin x}
$$




I realize that I need to apply l'Hopital's rule but I'm having trouble getting the indeterminate form.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...