My answer is as follows, but I'm not sure with this:
$\lim _{n\rightarrow \infty }\dfrac {\sqrt {2n^{2}+n}}{\sqrt {2n^{2}+2n}}=\lim _{n\rightarrow \infty }\left( \dfrac {2n^{2}+n}{2n^{2}+2n}\right) ^{\dfrac {1}{2}}$
$\lim _{n\rightarrow \infty }\dfrac {2n^{2}+n}{2n^{2}+2n}=\lim _{n\rightarrow \infty }\dfrac {2+\dfrac {1}{n}}{2+\dfrac {2}{n}}$
since $\lim _{n\rightarrow \infty }\dfrac {1}{n}=0$, $\lim _{n\rightarrow \infty }\dfrac {2n^{2}+n}{2n^{2}+2n}=1$
hence $\lim _{n\rightarrow \infty }\left( \dfrac {2n^{2}+n}{2n^{2}+2n}\right) ^{\dfrac {1}{2}}=\left( 1\right) ^{\dfrac {1}{2}}=1$ (by composite rule)
hence $\sqrt {2n^{2}+n}=\sqrt {2n^{2}+2n}$ as $n\rightarrow \infty $
so $\lim _{n\rightarrow \infty }\left( \sqrt {2n^{2}+n}-\sqrt {2n^{2}+2n}\right) =0$
Answer
You may write, as $n \to \infty$,
$$
\begin{align}
\sqrt {2n^{2}+n}-\sqrt {2n^{2}+2n}&=\frac{(2n^{2}+n)-(2n^{2}+2n)}{\sqrt {2n^{2}+n}+\sqrt {2n^{2}+2n}}
\\\\&=\frac{-n}{\sqrt {2n^{2}+n}+\sqrt {2n^{2}+2n}}
\\\\&=\frac{-1}{\sqrt {2+1/n}+\sqrt {2+2/n}}
\\\\&\to-\frac{1}{2\sqrt{2}}
\end{align}
$$
No comments:
Post a Comment