Is there a possible way to compute this limit ? I tried the L'Hôpital's rule, but it seems like the function become more complicated.
$$\lim_{n\to\infty} \frac{1}{n \log(n)} \frac{\sin\left(\frac{\pi}{n}+\frac{2 \pi \log(n)}{\sqrt n}\right)}{\sin\left(\frac{\pi}{n}\right)}$$
All suggestions are welcomed.
Answer
First, $$\lim_n\frac{\sin\frac\pi n}{\frac1n}=\pi,$$ so you might as well calculate
$$
\lim_{n\to\infty} \dfrac{\sin(\frac{\pi}{n}+\frac{2 \pi \log(n)}{\sqrt n})}{\log n}.
$$
You have
$$
\left|\dfrac{\sin(\frac{\pi}{n}+\frac{2 \pi \log(n)}{\sqrt n})}{\log n}\right|\leq\frac1{\log n}\xrightarrow{\ \ \ \ \ }0,
$$
so the limit is zero.
No comments:
Post a Comment