Let $f:\mathbb{R} \rightarrow \mathbb{R}$ and $ f(x + y) = f(x) + f(y)$.
How can I show that $f$ is continuous, when $f$ is continuous at $f(0)$?
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment