Wednesday, 28 June 2017

integration - Evaluating $intfrac{cos^2x}{1+tan x},dx$



I'd like to evaluate the following integral:



$$\int \frac{\cos^2 x}{1+\tan x}dx$$



I tried integration by substitution, but I was not able to proceed.


Answer




$\displaystyle \int \frac{\cos^2 x}{1+\tan x}dx = \int\frac{\cos^3 x}{\sin x+\cos x}dx = \frac{1}{2}\int\frac{(\cos^3 x+\sin ^3 x)+(\cos^3 x-\sin ^3 x)}{\cos x+\sin x}dx$



$\displaystyle = \frac{1}{4}\int (2-\sin 2x)dx+\frac{1}{4}\int\frac{(2+\sin 2x)(\cos x-\sin x)}{\cos x+\sin x}dx$



put $\cos x+\sin x= t$ and $1+\sin 2x = t^2$ in second integral


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...