Test $x_n = (n+i\pi)^n n^{-n + 1/n}$ for convergence and give its limit if possible.
I'm not really sure what to do here. My first instinct was to rewrite the sequence as $x_n= (n+i\pi)^n n^{-n} n^{1/n}$ and evaluate the limits, but I'm left with $\lim_{n\rightarrow\infty} n^{1/n}=1$ and $\lim_{n\rightarrow\infty} n^{-n}=0$, which leaves me with nothing really. Can somebody help out?
No comments:
Post a Comment