Suppose $a_0$ is an arbitrary positive real number. Define the sequence $\{a_n\}$ by $$a_{n+1}=\frac{a_n+2}{a_n+1}$$ for all $n\geq0$. I have to prove that $\{a_n\}$ converges.
My attempt: If $a=\lim_{n\to\infty}{a_n}$ exists, then it should be a solution to $$a=\frac{a+2}{a+1}$$ which is $\sqrt2$. Thus I need to show that $|\sqrt2 - a_n|$ gets arbitrarily small for large $n$. I tried to prove that $|\sqrt2-a_n|<|\sqrt2-a_{n-1}|$ but couldn't.
No comments:
Post a Comment