Thursday, 22 June 2017

elementary number theory - Prove that $gcd(2^{a}+1,2^{gcd(a,b)}-1)=1$


Let $a$ and $b$ be two odd positive integers. Prove that $\gcd(2^{a}+1,2^{\gcd(a,b)}-1)=1$.




I tried rewriting it to get $\gcd(2^{2k+1}+1,2^{\gcd(2k+1,2n+1)}-1)$, but I didn't see how this helps.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...