Friday, 30 June 2017

calculus - Solve this limit without using L'Hôpital's rule



I am given the following limit to solve, presumably without knowledge of L'Hôpital's rule:




$$\lim_{x\to0}\left({\frac{x}{1-\cos x}}\right)^2$$



I tried using trigonometric identities (namely Pythagorean) to solve it, but with no luck.


Answer



$\displaystyle \lim_{x\to0}\left({\frac{x}{1-\cos x}}\right)^2=$



$\displaystyle = \lim_{x\to0}\left({\frac{x}{2\sin^2 \frac x2}}\right)^2=$



$\displaystyle = \lim_{x\to0}\left({\frac{ \frac{x}{2}}{\sin^2 \frac x2}}\right)^2=$




$\displaystyle = \lim_{x\to0}\left({\frac{ \frac{x}{2}}{\sin \frac x2}} \cdot \frac{1}{\sin \frac x2}\right)^2=$



$\displaystyle =\left(1\cdot \frac{1}{0} \right)^2=$



$=\infty$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...