Sunday, 25 June 2017

integration - Evaluating intinftyinftyfracealphax(1+ex)1+lambda,mathrmdx for alpha,lambda>0





For α>0,λ>0, I am trying to evaluate the integral



I(α,λ)=Reαy(1+ey)1+λdy




Basically I am struggling to find a proper substitution here.



I can write




I(α,λ)=Re(1α)yey(1+ey)1+λdy



Changing variables z=1(1+ey)(1+λ)/2



, so that dz=(1+λ2)(1+ey)λ1λ+1ey(1+ey)1+λdy



Now,



z(1+ey)(1+λ)/2=1lnz+(1+λ2)ln(1+ey)=0ln(1+ey)=21+λlnzey=exp(21+λlnz)1=z2/(1+λ)1



From (1), I get ey(1+ey)1+λdy=(21+λ)zλ1λ+1dz



And



e(1α)y=(ey)(1α)=(z2/(1+λ)1)α1




So finally,



I(α,λ)=21+λ10(z2/(1+λ)1)α1zλ1λ+1dz



I transformed the domain of integration to (0,1) so that I can use the Beta function and hence get an answer in terms of Gamma functions. But looks like I have made an error somewhere.






I also tried writing \frac{1}{(1+e^{-y})^{1+\lambda}}=\sum_{j=0}^\infty \binom{-(1+\lambda)}{j}e^{-yj}




, so that



\begin{align} I(\alpha,\lambda)&=\int_{\mathbb R} e^{-\alpha y}\sum_{j=0}^\infty \binom{-(1+\lambda)}{j}e^{-yj}\,\mathrm{d}y \\&\stackrel{?}{=}\sum_{j=0}^\infty \binom{-(1+\lambda)}{j}\int_{\mathbb R}e^{-(\alpha+j)y}\,\mathrm{d}y \end{align}



But this is not correct either.







According to Mathematica, I should get



I(\alpha,\lambda)=\frac{\Gamma(\alpha)\Gamma(1+\lambda-\alpha)}{\Gamma(1+\lambda)}\quad,\text{ if }\alpha<1+\lambda


Answer



You can use x = \frac{1}{1+\mathrm{e}^{-y}} ~ \Leftrightarrow ~ \mathrm{e}^{-y} = \frac{1-x}{x} here. Then
I(\alpha, \lambda) = \int \limits_0^1 x^{\lambda-\alpha} (1-x)^{\alpha-1} \, \mathrm{d} x = \operatorname{B} (1+\lambda-\alpha,\alpha) = \frac{\Gamma(\alpha) \Gamma(1+\lambda-\alpha)}{\Gamma(1+\lambda)} \, .


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...