For $\alpha>0,\lambda>0$, I am trying to evaluate the integral
$$I(\alpha,\lambda)=\int_{\mathbb R}\frac{e^{-\alpha y}}{(1+e^{-y})^{1+\lambda}}\,\mathrm{d}y$$
Basically I am struggling to find a proper substitution here.
I can write
$$I(\alpha,\lambda)=\int_{\mathbb R}e^{(1-\alpha)y}\frac{e^{-y}}{(1+e^{-y})^{1+\lambda}}\,\mathrm{d}y$$
Changing variables $$z=\frac{1}{(1+e^{-y})^{(1+\lambda)/2}}$$
, so that $$\mathrm{d}z=\left(\frac{1+\lambda}{2}\right)(1+e^{-y})^{\frac{\lambda-1}{\lambda+1}}\frac{e^{-y}}{(1+e^{-y})^{1+\lambda}}\,\mathrm{d}y\tag{1}$$
Now,
\begin{align}
&\qquad\quad z(1+e^{-y})^{(1+\lambda)/2}=1
\\&\implies \ln z+\left(\frac{1+\lambda}{2}\right)\ln(1+e^{-y})=0
\\&\implies \ln(1+e^{-y})=-\frac{2}{1+\lambda}\ln z
\\&\implies e^{-y}=\exp\left(-\frac{2}{1+\lambda}\ln z\right)-1=z^{-2/(1+\lambda)}-1
\end{align}
From $(1)$, I get $$\frac{e^{-y}}{(1+e^{-y})^{1+\lambda}}\,\mathrm{d}y=\left(\frac{2}{1+\lambda}\right)z^{\frac{\lambda-1}{\lambda+1}}\,\mathrm{d}z$$
And
$$e^{(1-\alpha)y}=(e^{-y})^{-(1-\alpha)}=\left(z^{-2/(1+\lambda)}-1\right)^{\alpha-1}$$
So finally,
$$I(\alpha,\lambda)=\frac{2}{1+\lambda}\int_0^1 \left(z^{-2/(1+\lambda)}-1\right)^{\alpha-1}z^{\frac{\lambda-1}{\lambda+1}}\,\mathrm{d}z$$
I transformed the domain of integration to $(0,1)$ so that I can use the Beta function and hence get an answer in terms of Gamma functions. But looks like I have made an error somewhere.
I also tried writing $$\frac{1}{(1+e^{-y})^{1+\lambda}}=\sum_{j=0}^\infty \binom{-(1+\lambda)}{j}e^{-yj}$$
, so that
\begin{align}
I(\alpha,\lambda)&=\int_{\mathbb R} e^{-\alpha y}\sum_{j=0}^\infty \binom{-(1+\lambda)}{j}e^{-yj}\,\mathrm{d}y
\\&\stackrel{?}{=}\sum_{j=0}^\infty \binom{-(1+\lambda)}{j}\int_{\mathbb R}e^{-(\alpha+j)y}\,\mathrm{d}y
\end{align}
But this is not correct either.
According to Mathematica, I should get
$$I(\alpha,\lambda)=\frac{\Gamma(\alpha)\Gamma(1+\lambda-\alpha)}{\Gamma(1+\lambda)}\quad,\text{ if }\alpha<1+\lambda$$
Answer
You can use $x = \frac{1}{1+\mathrm{e}^{-y}} ~ \Leftrightarrow ~ \mathrm{e}^{-y} = \frac{1-x}{x}$ here. Then
$$ I(\alpha, \lambda) = \int \limits_0^1 x^{\lambda-\alpha} (1-x)^{\alpha-1} \, \mathrm{d} x = \operatorname{B} (1+\lambda-\alpha,\alpha) = \frac{\Gamma(\alpha) \Gamma(1+\lambda-\alpha)}{\Gamma(1+\lambda)} \, . $$
No comments:
Post a Comment