Sunday, 25 June 2017

integration - Evaluating $int_{-infty}^{infty}frac{e^{-alpha x}}{(1+e^{-x})^{1+lambda}},mathrm{d}x$ for $alpha,lambda>0$





For $\alpha>0,\lambda>0$, I am trying to evaluate the integral



$$I(\alpha,\lambda)=\int_{\mathbb R}\frac{e^{-\alpha y}}{(1+e^{-y})^{1+\lambda}}\,\mathrm{d}y$$




Basically I am struggling to find a proper substitution here.



I can write




$$I(\alpha,\lambda)=\int_{\mathbb R}e^{(1-\alpha)y}\frac{e^{-y}}{(1+e^{-y})^{1+\lambda}}\,\mathrm{d}y$$



Changing variables $$z=\frac{1}{(1+e^{-y})^{(1+\lambda)/2}}$$



, so that $$\mathrm{d}z=\left(\frac{1+\lambda}{2}\right)(1+e^{-y})^{\frac{\lambda-1}{\lambda+1}}\frac{e^{-y}}{(1+e^{-y})^{1+\lambda}}\,\mathrm{d}y\tag{1}$$



Now,



\begin{align}
&\qquad\quad z(1+e^{-y})^{(1+\lambda)/2}=1

\\&\implies \ln z+\left(\frac{1+\lambda}{2}\right)\ln(1+e^{-y})=0
\\&\implies \ln(1+e^{-y})=-\frac{2}{1+\lambda}\ln z
\\&\implies e^{-y}=\exp\left(-\frac{2}{1+\lambda}\ln z\right)-1=z^{-2/(1+\lambda)}-1
\end{align}



From $(1)$, I get $$\frac{e^{-y}}{(1+e^{-y})^{1+\lambda}}\,\mathrm{d}y=\left(\frac{2}{1+\lambda}\right)z^{\frac{\lambda-1}{\lambda+1}}\,\mathrm{d}z$$



And



$$e^{(1-\alpha)y}=(e^{-y})^{-(1-\alpha)}=\left(z^{-2/(1+\lambda)}-1\right)^{\alpha-1}$$




So finally,



$$I(\alpha,\lambda)=\frac{2}{1+\lambda}\int_0^1 \left(z^{-2/(1+\lambda)}-1\right)^{\alpha-1}z^{\frac{\lambda-1}{\lambda+1}}\,\mathrm{d}z$$



I transformed the domain of integration to $(0,1)$ so that I can use the Beta function and hence get an answer in terms of Gamma functions. But looks like I have made an error somewhere.






I also tried writing $$\frac{1}{(1+e^{-y})^{1+\lambda}}=\sum_{j=0}^\infty \binom{-(1+\lambda)}{j}e^{-yj}$$




, so that



\begin{align}
I(\alpha,\lambda)&=\int_{\mathbb R} e^{-\alpha y}\sum_{j=0}^\infty \binom{-(1+\lambda)}{j}e^{-yj}\,\mathrm{d}y
\\&\stackrel{?}{=}\sum_{j=0}^\infty \binom{-(1+\lambda)}{j}\int_{\mathbb R}e^{-(\alpha+j)y}\,\mathrm{d}y
\end{align}



But this is not correct either.







According to Mathematica, I should get



$$I(\alpha,\lambda)=\frac{\Gamma(\alpha)\Gamma(1+\lambda-\alpha)}{\Gamma(1+\lambda)}\quad,\text{ if }\alpha<1+\lambda$$


Answer



You can use $x = \frac{1}{1+\mathrm{e}^{-y}} ~ \Leftrightarrow ~ \mathrm{e}^{-y} = \frac{1-x}{x}$ here. Then
$$ I(\alpha, \lambda) = \int \limits_0^1 x^{\lambda-\alpha} (1-x)^{\alpha-1} \, \mathrm{d} x = \operatorname{B} (1+\lambda-\alpha,\alpha) = \frac{\Gamma(\alpha) \Gamma(1+\lambda-\alpha)}{\Gamma(1+\lambda)} \, . $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...