For α>0,λ>0, I am trying to evaluate the integral
I(α,λ)=∫Re−αy(1+e−y)1+λdy
Basically I am struggling to find a proper substitution here.
I can write
I(α,λ)=∫Re(1−α)ye−y(1+e−y)1+λdy
Changing variables z=1(1+e−y)(1+λ)/2
, so that dz=(1+λ2)(1+e−y)λ−1λ+1e−y(1+e−y)1+λdy
Now,
z(1+e−y)(1+λ)/2=1⟹lnz+(1+λ2)ln(1+e−y)=0⟹ln(1+e−y)=−21+λlnz⟹e−y=exp(−21+λlnz)−1=z−2/(1+λ)−1
From (1), I get e−y(1+e−y)1+λdy=(21+λ)zλ−1λ+1dz
And
e(1−α)y=(e−y)−(1−α)=(z−2/(1+λ)−1)α−1
So finally,
I(α,λ)=21+λ∫10(z−2/(1+λ)−1)α−1zλ−1λ+1dz
I transformed the domain of integration to (0,1) so that I can use the Beta function and hence get an answer in terms of Gamma functions. But looks like I have made an error somewhere.
I also tried writing \frac{1}{(1+e^{-y})^{1+\lambda}}=\sum_{j=0}^\infty \binom{-(1+\lambda)}{j}e^{-yj}
, so that
\begin{align} I(\alpha,\lambda)&=\int_{\mathbb R} e^{-\alpha y}\sum_{j=0}^\infty \binom{-(1+\lambda)}{j}e^{-yj}\,\mathrm{d}y \\&\stackrel{?}{=}\sum_{j=0}^\infty \binom{-(1+\lambda)}{j}\int_{\mathbb R}e^{-(\alpha+j)y}\,\mathrm{d}y \end{align}
But this is not correct either.
According to Mathematica, I should get
I(\alpha,\lambda)=\frac{\Gamma(\alpha)\Gamma(1+\lambda-\alpha)}{\Gamma(1+\lambda)}\quad,\text{ if }\alpha<1+\lambda
Answer
You can use x = \frac{1}{1+\mathrm{e}^{-y}} ~ \Leftrightarrow ~ \mathrm{e}^{-y} = \frac{1-x}{x} here. Then
I(\alpha, \lambda) = \int \limits_0^1 x^{\lambda-\alpha} (1-x)^{\alpha-1} \, \mathrm{d} x = \operatorname{B} (1+\lambda-\alpha,\alpha) = \frac{\Gamma(\alpha) \Gamma(1+\lambda-\alpha)}{\Gamma(1+\lambda)} \, .
No comments:
Post a Comment