Find the value of
I=∫π/20x2ln(sinx)ln(cosx) dx
We have the information that
J=∫π/20xln(sinx)ln(cosx) dx=(πln2)28−π4192
Answer
Tools Needed
1k(j−k)2=1j2k−1j2(k−j)+1j(k−j)21k(j+k)2=1j2k−1j2(k+j)−1j(k+j)2log(sin(x))=−log(2)−∞∑k=1cos(2kx)klog(cos(x))=−log(2)−∞∑k=1(−1)kcos(2kx)kcos(2jx)cos(2kx)=12[cos(2(j−k)x)+cos(2(j+k)x)]
∫π/20x2cos(2kx)dx={(−1)kπ4k2if k≠0π324if k=0
Tool Use
∫π/20x2log(sin(x))log(cos(x))dx=∫π/20x2(log(2)+∞∑k=1cos(2kx)k)(log(2)+∞∑k=1(−1)kcos(2kx)k)dx=log(2)2∫π/20x2dx+log(2)∞∑k=11k∫π/20x2cos(4kx)dx+∞∑j=1∞∑k=1(−1)k2jk∫π/20x2[cos(2(j−k)x)+cos(2(j+k)x)]dx=π324log(2)2+log(2)π16ζ(3)+π8∞∑j=1∞∑k=1(−1)jjk[iif(j=k,π26,1(j−k)2)+1(j+k)2]=π324log(2)2+log(2)π16ζ(3)+π8∞∑j=1(−1)jjj−1∑k=11k(j−k)2+π8∞∑j=1(−1)jj2π26+π8∞∑j=1(−1)jj∞∑k=j+11k(j−k)2+π8∞∑j=1(−1)jj∞∑k=11k(j+k)2=π324log(2)2+log(2)π16ζ(3)+π8∞∑j=1(−1)jj(2j2Hj−1+1jH(2)j−1)−π5576+π8∞∑j=1(−1)jj(−1j2Hj+1jπ26)+π8∞∑j=1(−1)jj(1j2Hj−1jπ26+1jH(2)j)=π324log(2)2+log(2)π16ζ(3)+π8∞∑j=1(−1)jj(2j2Hj+2jH(2)j−3j3)−π5576=π324log(2)2+log(2)π16ζ(3)+11π55760+π4∑(−1)j(1j3Hj+1j2H(2)j)=π324log(2)2+log(2)π16ζ(3)−π5960−π16∞∑j=11j3H2j
Numerically, (7) matches the integral. I'm working on the last harmonic sum. Both numerical integration and (7) yield 0.0778219793722938643380944.
Mathematica Help
Thanks to Artes' answer on Mathematica, I have verified that these agree to 100 places.
No comments:
Post a Comment