Sunday, 25 June 2017

integration - How to evaluate I=intpi/20x2ln(sinx)ln(cosx)mathrmdx



Find the value of
I=π/20x2ln(sinx)ln(cosx) dx



We have the information that
J=π/20xln(sinx)ln(cosx) dx=(πln2)28π4192


Answer



Tools Needed

1k(jk)2=1j2k1j2(kj)+1j(kj)21k(j+k)2=1j2k1j2(k+j)1j(k+j)2log(sin(x))=log(2)k=1cos(2kx)klog(cos(x))=log(2)k=1(1)kcos(2kx)kcos(2jx)cos(2kx)=12[cos(2(jk)x)+cos(2(j+k)x)]
π/20x2cos(2kx)dx={(1)kπ4k2if k0π324if k=0






Tool Use

π/20x2log(sin(x))log(cos(x))dx=π/20x2(log(2)+k=1cos(2kx)k)(log(2)+k=1(1)kcos(2kx)k)dx=log(2)2π/20x2dx+log(2)k=11kπ/20x2cos(4kx)dx+j=1k=1(1)k2jkπ/20x2[cos(2(jk)x)+cos(2(j+k)x)]dx=π324log(2)2+log(2)π16ζ(3)+π8j=1k=1(1)jjk[iif(j=k,π26,1(jk)2)+1(j+k)2]=π324log(2)2+log(2)π16ζ(3)+π8j=1(1)jjj1k=11k(jk)2+π8j=1(1)jj2π26+π8j=1(1)jjk=j+11k(jk)2+π8j=1(1)jjk=11k(j+k)2=π324log(2)2+log(2)π16ζ(3)+π8j=1(1)jj(2j2Hj1+1jH(2)j1)π5576+π8j=1(1)jj(1j2Hj+1jπ26)+π8j=1(1)jj(1j2Hj1jπ26+1jH(2)j)=π324log(2)2+log(2)π16ζ(3)+π8j=1(1)jj(2j2Hj+2jH(2)j3j3)π5576=π324log(2)2+log(2)π16ζ(3)+11π55760+π4(1)j(1j3Hj+1j2H(2)j)=π324log(2)2+log(2)π16ζ(3)π5960π16j=11j3H2j
Numerically, (7) matches the integral. I'm working on the last harmonic sum. Both numerical integration and (7) yield 0.0778219793722938643380944.




Mathematica Help



Thanks to Artes' answer on Mathematica, I have verified that these agree to 100 places.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...