Friday 23 June 2017

integration - Evaluating the integral $int_0^{infty}frac{x^3}{x^2+a^2},mathrm{d}x$



If $\displaystyle\int_0^{\infty}\dfrac{x^3}{x^2+a^2}\,\mathrm{d}x=\large\displaystyle\dfrac1{ka^6}$, then find the value of $\displaystyle\dfrac{k}{8}$.




I tried a lot but finally stuck at an intermediate form :



$$\begin{align}
&\int_0^{\infty}\dfrac{x^3}{x^2+a^2}\,\mathrm{d}x, \text{with}\, {x^2=t},{2x~\mathrm{d}x=\mathrm{d}t}\\
&=\frac12\int_0^{\infty}\dfrac{(x^2)(2x)}{x^2+a^2}\,\mathrm{d}x=\frac12\int_0^{\infty}\dfrac{t}{t+a^2}\,\mathrm{d}t=\frac12\int_0^{\infty}\dfrac{t+a^2-a^2}{t+a^2}\,\mathrm{d}t\\
&=\frac12\left[\int_0^{\infty}\mathrm{d}t-\int_0^{\infty}\dfrac{a^2}{t+a^2}\,\mathrm{d}t\right]=\frac12\left[t|_0^{\infty}-a^2\ln(a^2+t)|_0^{\infty}\right]
\end{align}$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...