Monday, 19 June 2017

elementary number theory - Does B1+z1M1equivB2pmodM2 mean that z1=(B2bmodM2B1)/M1?



So a mathematician gives me a system like this:



\begin{eqnarray*} B_1 + z_1 M_1 &\equiv& B_2 \pmod {M_2} \\ B_1 + z_1 M_1 + z_2 M_1M_2 &\equiv& B_3 \pmod {M_3} \\ &\cdots& \\ B_1 + z_1M_1 + z_2 M_1M_2 + \cdots + z_{k-1}M_1 M_2 \cdots M_{k-1} &\equiv& B_k \pmod{M_k}. \end{eqnarray*}



But I forgot how to solve such systems. So I wonder does B_1+z_1 M_1 \equiv B_2 \pmod {M_2} mean that z_1 = (B_2 \bmod M_2 - B_1)/M_1?


Answer




B_1+z_1m_1=B_2(\mod m_2)\Rightarrow



\Rightarrow (B_1+z_1m_1)-B_2=am_2\Rightarrow



\Rightarrow z_1m_1=B_2-B_1+am_2 \Rightarrow



\Rightarrow z_1=\frac{B_2-B_1+am_2 }{m_1} , where a is an integer


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...