I'm trying to figure this out:
Show that for all positive integers $m$ and $n$
$\gcd(2^m-1, 2^n-1) = 2^{\gcd(m,n)} -1$
I appreciate your help,
Thanks.
Note: $\gcd$ stands for the greatest common divisor.
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment