Let a,m,n∈N. Show that if gcd, then \gcd(a,mn)=\gcd(a,m)\cdot\gcd(a,n).
Proof:
Let u,v\in\mathbf{Z} such that \gcd(m,n)=um+vn=1. Let b,c\in\mathbf{Z} such that \gcd(m,a)=ab+cm. Let d,e\in\mathbf{Z} such that \gcd(a,n)=ad+en.
So \gcd(a,m)\cdot\gcd(a,n)=a^2bd+cmen+aben+emad.
Where do I go from here?
Answer
\gcd(a,m)\cdot \gcd(a,n) = a(abd+ben+emd)+(mn)(ce) \ge \gcd(a,mn)
Say \gcd(\gcd(a,m),\gcd(a,n)) = p where p>1.
Then p|gcd(a,m) and p|gcd(a,n). Which means p|m and p|n. So p is a common divisor of m and n. \gcd(m,n) \ge p. But this is impossible since \gcd(m,n)=1 and p>1. Thus, p=1
If \gcd(a,m) = x, this means x|a and x|m. If x|m, then x|mn.
Thus x is a common divisor of a and mn. x|\gcd(a,mn)
If \gcd(a,n) = y, this means y|a and y|n. If y|n, then y|mn.
Thus y is a common divisor of a and mn. y|\gcd(a,mn)
Because \gcd(x,y) = 1, xy|\gcd(a,mn)
So \gcd(a,m) \cdot \gcd(a,n) \le \gcd(a,mn)
Therefore, \gcd(a,m) \cdot \gcd(a,n) = \gcd(a,mn)
No comments:
Post a Comment