Sunday 29 January 2017

algebra precalculus - $a,b$ are roots of $x^2-3cx-8d = 0$ and $c,d$ are roots of $x^2-3ax-8b = 0$. Then $a+b+c+d =$



(1) If $a,b$ are the roots of the equation $x^2-10cx-11d=0$ and $c,d$ are the roots of the equation



$x^2-10ax-11b=0$. Then the value of $\displaystyle \sqrt{\frac{a+b+c+d}{10}}=,$ where $a,b,c,d$ are distinct real numbers.



(2) If $a,b,c,d$ are distinct real no. such that $a,b$ are the roots of the equation $x^2-3cx-8d = 0$




and $c,d$ are the roots of the equation $x^2-3ax-8b = 0$. Then $a+b+c+d = $



$\bf{My\; Try}::$(1) Using vieta formula



$a+b=10c......................(1)$ and $ab=-11d......................(2)$



$c+d=10a......................(3)$ and $cd=-11b......................(4)$



Now $a+b+c+d=10(a+c)..........................................(5)$




and $abcd=121bd\Rightarrow bd(ab-121)=0\Rightarrow bd=0$ or $ab=121$



Now I did not understand how can i calculate $a$ and $c$



Help Required



Thanks


Answer



The answer for (1) is $11$.




$$abcd=121bd\Rightarrow bd(ac-121)=0\Rightarrow bd=0\ \text{or}\ ac=121.$$
(Note that you have a mistake here too.)



1) The $bd=0$ case : If $b=0$, we have $x(x-10a)=0$. This leads that $c=0$ or $d=0$. This is a contradiction. The $d=0$ case also leads a contradiction.



2) The $ac=121$ case : We have $$c=\frac{121}{a}, b=\frac{1210}{a}-a, d=10a-\frac{121}{a}.$$ Hence, we have
$$1210-a^2-11\left(10a-\frac{121}{a}\right)=0$$
$$\Rightarrow a^3-110a^2-1210a+121\times 11=0$$
$$\Rightarrow a=11, \frac{11(11\pm 3\sqrt{13})}{2}.$$




If $a=11$, then $c=11$, which is a contradiction. Hence, we have
$$(a,c)=\left(\frac{11(11\pm 3\sqrt{13})}{2},\frac{11(11\mp 3\sqrt{13})}{2}\right).$$



Hence, we have
$$\sqrt{\frac{a+b+c+d}{10}}=\sqrt{a+c}=\sqrt{121}=11.$$



I think you can get an answer for (2) in the same way as above.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...