Friday, 13 January 2017

real analysis - Prove intlimitsfracpi20sin(2nx),cotx,mathrmdxintlimitsfracpi20fracsin(2nx)x,mathrmdxto0




Let an=π20sin(2nx)cotxdx    and   bn=π20sin(2nx)xdx.
Prove that anbn0.




Attempt. We have that
anbn=π20sin(2nx)(cotx1x)dx.
Integration by parts would give:

anbn=[log(sinxx)sin(2nx)]π202nπ20cos(2nx)log(sinxx)dx
=2nπ20cos(2nx)log(sinxx)dx but this doesn't seem to go any further.



On the other hand, from Integral π0cot(x/2)sin(nx)dx we have an=π2, so:



bnan=π20(sin(2nx)x1)dx,
so:
|bnan|
but I also didn't manage to get this any further.




Thanks in advance for the help.






Edit. Consequence of the above limit is the evaluation of the Dirichlet integral: \int\limits_0^{+\infty}\frac{\sin x}{x}\,\mathrm{d}x= \lim_{n \to +\infty}b_n=\lim_{n \to +\infty}a_n=\frac{\pi}{2}.


Answer



N.B.: I think it's good, but I'm tired, so it might be wrong. I'm going to check it after I wake up; read it carefully until then.



Let f(x)=\cot(x)-\frac{1}{x} with f(0)=0.
We have that

\begin{align} \left|\int_0^{\pi/2}f(x)\sin(2nx)\mathrm{d}x\right| &=\left|-\int_0^{\pi/2}f'(x)\frac{\cos(2nx)}{2n}\mathrm{d}x+\left[\frac{f(x)\cos(2nx)}{2n}\right]_0^{\pi/2}\right|\\ &=\left|-\int_0^{\pi/2}f'(x)\frac{\cos(2nx)}{2n}\mathrm{d}x+\left(-\frac{2}{\pi}\right)\frac{\cos(n \pi)}{2n}\right|\\ &=\left|-\int_0^{\pi/2}f'(x)\frac{\cos(2nx)}{2n}\mathrm{d}x-\frac{(-1)^n}{n \pi}\right|\\ &\leqslant \left|\int_0^{\pi/2}f'(x)\frac{\cos(2nx)}{2n}\mathrm{d}x\right|+\left|\frac{(-1)^n}{n\pi}\right| \\ &\leqslant \int_0^{\pi/2}\left|f'(x)\frac{\cos(2nx)}{2n}\right|\mathrm{d}x+\frac{1}{n\pi}\\ &\leqslant \int_0^{\pi/2}\left|C\frac{\cos(2nx)}{2n}\right|\mathrm{d}x+\frac{1}{n\pi}\\ &\leqslant \frac{C}{2n}\int_0^{\pi/2}\left|\cos(2nx)\right|\mathrm{d}x+\frac{1}{n\pi}\\ &\leqslant \frac{C}{2n}\int_0^{\pi/2}1\mathrm{d}x+\frac{1}{n\pi}\\ &\leqslant \frac{\pi C}{4n}+\frac{1}{n\pi} \to 0 \end{align}
Since the absolute value of the derivative of f on [0, \pi/2] is bounded by a constant C.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...