Friday, 13 January 2017

Cauchy-Schwarz Inequality troubles





I have to prove the following inequality using the Cauchy-Schwarz inequality:
$$\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2$$
where a, b, c and d are positive real numbers.




But I am not able to do it, I am hitting dead-ends with every method I try. Please help!


Answer



By C-S and AM-GM we obtain:
$$\sum_{cyc}\frac{a}{b+c}=\sum_{cyc}\frac{a^2}{ab+ac}\geq\frac{(a+b+c+d)^2}{\sum\limits_{cyc}(ab+ac)}=2+\frac{(a+b+c+d)^2-2\sum\limits_{cyc}(ab+ac)}{\sum\limits_{cyc}(ab+ac)}=$$
$$=2+\frac{a^2+c^2+b^2+d^2-2ac-2bd}{\sum\limits_{cyc}(ab+ac)}\geq2+\frac{2\sqrt{a^2c^2}+2\sqrt{b^2d^2}-2ac-2bd}{\sum\limits_{cyc}(ab+ac)}=2.$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...