Monday, 16 January 2017

trigonometry - Trigonometric Identities: $frac{sin^2theta}{1+costheta}=1-costheta$



$\dfrac{\sin^2\theta}{1+\cos\theta}=1-\cos\theta$




Right Side:
$1-\cos\theta$ either stays the same, or can be $1-\dfrac{1}{\sec\theta}$



Left Side:
$$\begin{align*}
&= \dfrac{\sin^2\theta}{1+\cos\theta}\\
&= \dfrac{1-\cos^2\theta}{1+\cos\theta}
&= \dfrac{(1-\cos\theta)(1+\cos\theta)}{1+cos\theta}
&= 1-\cos\theta

\end{align*}$$



Is this correct?


Answer



Perhaps slightly simpler and shorter (FYI, what you did is correct):
$$\frac{\sin^2x}{1+\cos x}=1-\cos x\Longleftrightarrow \sin^2x=(1-\cos x)(1+\cos x)\Longleftrightarrow \sin^2x=1-\cos^2x$$
And since the last equality is just the trigonometric Pytahgoras Theorem we're done.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...