Friday 13 January 2017

calculus - Prove that $int_R frac{1}{1-x^2y^2} ,dx ,dy = sum_{n=0}^{infty} frac{1}{(2n+1)^2}$



The region $R$ is the unit square with corners at $(0,0), (1,0), (0,1)$ and $(1,1)$.




The idea is to consider the geometric series.



Any help would be appreciated. Thank you


Answer



I collect all hints and write down the answer.




  1. We use the formula for sum of a geometric series as following
    $$
    \frac{1}{1-x^2y^2} = 1 + x^2y^2 +x^4y^4 + \dots.

    $$

  2. Then we have
    $$
    \int\limits_{R}\frac{1}{1-x^2y^2}\, dxdy =
    \int\limits_{R}\sum\limits_{n=0}^\infty x^{2n}y^{2n}\, dxdy = \sum\limits_{n=0}^\infty
    \int\limits_{R}x^{2n}y^{2n}\, dxdy.
    $$

  3. And $\int\limits_{R}x^{2n}y^{2n}\, dxdy = \int_0^1\int_0^1x^{2n}y^{2n}\, dxdy = 1/(2n+1)^2$.

  4. Finally
    $$

    \int\limits_{R}\frac{1}{1-x^2y^2}\, dxdy = \sum\limits_{n=0}^\infty\frac{1}{(2n+1)^2}.
    $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...