Sunday, 15 January 2017

calculus - Find the value of : limxtoinftyfracsqrtx1sqrtx2sqrtx2sqrtx3



I'm trying to solve evaluate this limit



lim



I've tried to rationalize the denominator but this is what I've got




\lim_{x\to\infty}(\sqrt{x-1} - \sqrt{x-2})({\sqrt{x-2} + \sqrt{x-3}})



and I don't know how to remove these indeterminate forms (\infty - \infty).



EDIT: without l'Hospital's rule (if possible).


Answer



Fill in details:



As \;x\to\infty\; we can assume \;x>0\; , so:




\frac{\sqrt{x-1}-\sqrt{x-2}}{\sqrt{x-2}-\sqrt{x-3}}=\frac{\sqrt{x-2}+\sqrt{x-3}}{\sqrt{x-1}+\sqrt{x-2}}=\frac{\sqrt{1-\frac2x}+\sqrt{1-\frac3x}}{\sqrt{1-\frac1x}+\sqrt{1-\frac2x}}\xrightarrow[x\to\infty]{}1



Further hint: the first step was multiplying by conjugate of both the numerator and the denominator.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...