Sunday, 22 January 2017

calculus - Evaluating $limlimits_{ntoinfty} e^{-n} sumlimits_{k=0}^{n} frac{n^k}{k!}$



I'm supposed to calculate:



$$\lim_{n\to\infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!}$$



By using W|A, i may guess that the limit is $\frac{1}{2}$ that is a pretty interesting and nice result. I wonder in which ways we may approach it.


Answer




Edited. I justified the application of the dominated convergence theorem.



By a simple calculation,



$$ \begin{align*}
e^{-n}\sum_{k=0}^{n} \frac{n^k}{k!}
&= \frac{e^{-n}}{n!} \sum_{k=0}^{n}\binom{n}{k} n^k (n-k)! \\
(1) \cdots \quad &= \frac{e^{-n}}{n!} \sum_{k=0}^{n}\binom{n}{k} n^k \int_{0}^{\infty} t^{n-k}e^{-t} \, dt\\
&= \frac{e^{-n}}{n!} \int_{0}^{\infty} (n+t)^{n}e^{-t} \, dt \\
(2) \cdots \quad &= \frac{1}{n!} \int_{n}^{\infty} t^{n}e^{-t} \, dt \\

&= 1 - \frac{1}{n!} \int_{0}^{n} t^{n}e^{-t} \, dt \\
(3) \cdots \quad &= 1 - \frac{\sqrt{n} (n/e)^n}{n!} \int_{0}^{\sqrt{n}} \left(1 - \frac{u}{\sqrt{n}} \right)^{n}e^{\sqrt{n}u} \, du.
\end{align*}$$



We remark that




  1. In $\text{(1)}$, we utilized the famous formula $ n! = \int_{0}^{\infty} t^n e^{-t} \, dt$.

  2. In $\text{(2)}$, the substitution $t + n \mapsto t$ is used.

  3. In $\text{(3)}$, the substitution $t = n - \sqrt{n}u$ is used.




Then in view of the Stirling's formula, it suffices to show that



$$\int_{0}^{\sqrt{n}} \left(1 - \frac{u}{\sqrt{n}} \right)^{n}e^{\sqrt{n}u} \, du \xrightarrow{n\to\infty} \sqrt{\frac{\pi}{2}}.$$



The idea is to introduce the function



$$ g_n (u) = \left(1 - \frac{u}{\sqrt{n}} \right)^{n}e^{\sqrt{n}u} \mathbf{1}_{(0, \sqrt{n})}(u) $$




and apply pointwise limit to the integrand as $n \to \infty$. This is justified once we find a dominating function for the sequence $(g_n)$. But notice that if $0 < u < \sqrt{n}$, then



$$ \log g_n (u)
= n \log \left(1 - \frac{u}{\sqrt{n}} \right) + \sqrt{n} u
= -\frac{u^2}{2} - \frac{u^3}{3\sqrt{n}} - \frac{u^4}{4n} - \cdots \leq -\frac{u^2}{2}. $$



From this we have $g_n (u) \leq e^{-u^2 /2}$ for all $n$ and $g_n (u) \to e^{-u^2 / 2}$ as $n \to \infty$. Therefore by dominated convergence theorem and Gaussian integral,



$$ \int_{0}^{\sqrt{n}} \left(1 - \frac{u}{\sqrt{n}} \right)^{n}e^{\sqrt{n}u} \, du = \int_{0}^{\infty} g_n (u) \, du \xrightarrow{n\to\infty} \int_{0}^{\infty} e^{-u^2/2} \, du = \sqrt{\frac{\pi}{2}}. $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...