Find all $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\forall x,y \in \mathbb{R}$:
$f(f(f(x)+y)+y)=x+y+f(y)$
I got the following:
(1)$f$ is injective
(2) $f(0)=0$
(3)$f(f(f(x)))=x$
But then how to proceed?
Find all $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\forall x,y \in \mathbb{R}$:
$f(f(f(x)+y)+y)=x+y+f(y)$
I got the following:
(1)$f$ is injective
(2) $f(0)=0$
(3)$f(f(f(x)))=x$
But then how to proceed?
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment