Tuesday, 17 January 2017

functional equations - Find all $f: mathbb{R} rightarrow mathbb{R}$ such that $forall x,y in mathbb{R}$:$f(f(f(x)+y)+y)=x+y+f(y)$

Find all $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\forall x,y \in \mathbb{R}$:
$f(f(f(x)+y)+y)=x+y+f(y)$



I got the following:

(1)$f$ is injective
(2) $f(0)=0$



(3)$f(f(f(x)))=x$



But then how to proceed?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...