Thursday, 19 January 2017

Limit of sin(1/n)*n

My Maple input limit(sin(1/n)*n,n=infinity); says 1.



I don't understand why
$$
\lim_{n \to \infty} \sin\left(\frac{1}{n}\right) \cdot n = 1
$$



I know that $\lim_{n \to \infty} 1/n = 0$, so it kind of says "0 * infinity = 1".



Have I overlooked some rewriting of $\sin(1/n) n$?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...