What can be said about the convergence of the following modification of the hyperharmonic series ($\sum_{n=1}^{\infty} \frac{1}{n^{s}}$, which is convergent for any s>1):
$$\sum \frac{1}{n^{s_n}}$$ with $s_n$ strictly monotonically approaching 1 from above? In case both convergence and divergence are still possible under this condition, is it possible to give a specific criteria for convergence, e.g. in terms of the rate of convergence of $s_n$?
Sunday, 29 January 2017
elementary number theory - What can be said about the convergence of this series?
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
The question said: Use the Euclidean Algorithm to find gcd $(1207,569)$ and write $(1207,569)$ as an integer linear combination of $1207$ ...
No comments:
Post a Comment