I'm trying to find a closed form for the following sum
∞∑n=1Hnn32n,
where Hn=n∑k=11k is a harmonic number.
Could you help me with it?
Answer
In the same spirit as Robert Israel's answer and continuing Raymond Manzoni's answer (both of them deserve the credit because of inspiring my answer) we have
∞∑n=1Hnxnn2=ζ(3)+12lnxln2(1−x)+ln(1−x)Li2(1−x)+Li3(x)−Li3(1−x).
Dividing equation above by x and then integrating yields
∞∑n=1Hnxnn3=ζ(3)lnx+12∫lnxln2(1−x)x dx+∫ln(1−x)Li2(1−x)x dx+Li4(x)−∫Li3(1−x)x dx.
Using IBP to evaluate the green integral by setting u=Li3(1−x) and dv=1x dx, we obtain
∫Li3(1−x)x dx=Li3(1−x)lnx+∫lnxLi2(1−x)1−x dxx↦1−x=Li3(1−x)lnx−∫ln(1−x)Li2(x)x dx.
Using Euler's reflection formula for dilogarithm
Li2(x)+Li2(1−x)=π26−lnxln(1−x),
then combining the blue integral in (1) and (2) yields
π26∫ln(1−x)x dx−∫lnxln2(1−x)x dx=−π26Li2(x)−∫lnxln2(1−x)x dx.
Setting x↦1−x and using the identity Hn+1−Hn=1n+1, the red integral becomes
∫lnxln2(1−x)x dx=−∫ln(1−x)ln2x1−x dx=∫∞∑n=1Hnxnln2x dx=∞∑n=1Hn∫xnln2x dx=∞∑n=1Hn∂2∂n2[∫xn dx]=∞∑n=1Hn∂2∂n2[xn+1n+1]=∞∑n=1Hn[xn+1ln2xn+1−2xn+1lnx(n+1)2+2xn+1(n+1)3]=ln2x∞∑n=1Hnxn+1n+1−2lnx∞∑n=1Hnxn+1(n+1)2+2∞∑n=1Hnxn+1(n+1)3=12ln2xln2(1−x)−2lnx[∞∑n=1Hn+1xn+1(n+1)2−∞∑n=1xn+1(n+1)3]+2[∞∑n=1Hn+1xn+1(n+1)3−∞∑n=1xn+1(n+1)4]=12ln2xln2(1−x)−2lnx[∞∑n=1Hnxnn2−∞∑n=1xnn3]+2[∞∑n=1Hnxnn3−∞∑n=1xnn4]=12ln2xln2(1−x)−2lnx[∞∑n=1Hnxnn2−Li3(x)]+2[∞∑n=1Hnxnn3−Li4(x)].
Putting all together, we have
∞∑n=1Hnxnn3=12ζ(3)lnx−18ln2xln2(1−x)+12lnx[∞∑n=1Hnxnn2−Li3(x)]+Li4(x)−π212Li2(x)−12Li3(1−x)lnx+C.
Setting x=1 to obtain the constant of integration,
∞∑n=1Hnn3=Li4(1)−π212Li2(1)+Cπ472=π490−π472+CC=π460.
Thus
∞∑n=1Hnxnn3=12ζ(3)lnx−18ln2xln2(1−x)+12lnx[∞∑n=1Hnxnn2−Li3(x)]+Li4(x)−π212Li2(x)−12Li3(1−x)lnx+π460.
Finally, setting x=12, we obtain
∞∑n=1Hn2nn3=π4720+ln4224−ln28ζ(3)+Li4(12),
which matches Cleo's answer.
References :
[1] Harmonic number
[2] Polylogarithm
No comments:
Post a Comment