Friday, 20 January 2017

integration - Evaluating inti0nftysinx2,dx with real methods?



I have seen the Fresnel integral



0sinx2dx=π8



evaluated by contour integration and other complex analysis methods, and I have found these methods to be the standard way to evaluate this integral. I was wondering, however, does anyone know a real analysis method to evaluate this integral?



Answer



Let u=x2, then
0sin(u)du2u
The real analysis way of evaluating this integral is to consider a parametric family:
I(ϵ)=0sin(u)2ueϵudu=12n=0(1)n(2n+1)!0u2n+12eϵudu=12n=0(1)n(2n+1)!Γ(2n+32)ϵ322n=12ϵ3/2n=0(1ϵ2)nΓ(2n+32)Γ(2n+2)Γduplication=12ϵ3/2n=0(1ϵ2)nΓ(n+34)Γ(n+54)2n!Γ(n+32)=1(2ϵ)3/2Γ(34)Γ(54)Γ(32)2F1(34,54;32;1ϵ2)Euler integral=1(2ϵ)3/2Γ(34)Γ(54)Γ(32)1B(54,3254)10x541(1x)32541(1+xϵ2)3/4dx=123/2Γ(34)Γ(54)Γ(32)Γ(32)Γ(54)Γ(14)10x541(1x)141(ϵ2+x)3/4dx
Now we are ready to compute lim:
\begin{eqnarray} \lim_{\epsilon \to 0} I(\epsilon) &=& \frac{1}{2^{3/2}} \frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)} \int_0^1 x^{\frac{1}{2}-1} \left(1-x\right)^{\frac{1}{4}-1} \mathrm{d} x = \frac{1}{2^{3/2}} \frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)} \\ &=& \frac{1}{2^{3/2}} \Gamma\left(\frac{1}{2}\right) = \frac{1}{2} \sqrt{\frac{\pi}{2}} \end{eqnarray}



No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...