Friday, 2 June 2017

calculus - Limit and infinite sums. Finding $lim_{xrightarrowinfty}sum^{infty}_{k=1}frac{1}{k^3 x-k^2}$

Could anyone help me with this problem. Compute
$$\lim_{x\rightarrow\infty}\sum^{\infty}_{k=1}\dfrac{1}{k^3 x-k^2}$$ I don't know how to change a limit and a sum. Could you help me with this problem then suggest me some materials about changing a limit and a sum. Thanks.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...