Tuesday, 6 June 2017

elementary number theory - Prove without induction that $3^{4n}-2^{4n}$ is divisible by $65$




My brother asked me this (for some reason).



My solution is:



$(3^{4n}-2^{4n})\bmod{65}=$



$(81^{n}-16^{n})\bmod{65}=$




$((81\bmod{65})^{n}-16^{n})\bmod{65}=$



$(16^{n}-16^{n})\bmod{65}=$



$0\bmod{65}$






I think that this solution is mathematically flawless (please let me know if you think otherwise).




But I'm wondering if there's another way, perhaps with the binomial expansion of $(81-16)^{n}$.



In other words, something like:



$3^{4n}-2^{4n}=$



$81^{n}-16^{n}=$



$(81-16)^{n}+65k=$




$65^{n}+65k=$



$65(65^{n-1}+k)$



How would I go from "$81^{n}-16^{n}$" to "$(81-16)^{n}+65k$"?


Answer



You can use the formula $$a^n-b^n = (a-b)\left(a^{n-1}+a^{n-2}b+a^{n-3}b^2+\ldots+ab^{n-2}+b^{n-1}\right)$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...