Saturday, 3 June 2017

trigonometry - Please prove frac1+sinthetacostheta1+sintheta+costheta=tanleft(fractheta2right)




Prove that 1+sinθcosθ1+sinθ+cosθ=tan(θ2)





Also it is a question of S.L. Loney's Plane Trignonometry



What I've tried by now:



=1+sinθsin(90θ)1+cos(90θ)+cosθ=1+2cos45sin(θ45)1+2cos45cos(45θ)




Cause I do know
sinc+sind=2sin(c+d2)cos(cd2)and cosc+cosd=2cos(c+d2)sin(cd2)




I can't think of what to do next..


Answer



Let θ=2ϕ, then the thing to be proven is:




Prove that 1+sin(2ϕ)cos(2ϕ)1+sin(2ϕ)+cos(2ϕ)=tan(ϕ)





Then use:



sin(2ϕ)=2sinϕcosϕ
cos(2ϕ)=cos2ϕsin2ϕ



and:



sin2ϕ+cos2ϕ=1


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...