Given that $\tan x= -2$ and $\cos y= 1/2$ where $x$ and $y$ are in the 4th and 1st quadrants respectively. Find, without evaluating angles $x$ and $y$,
a) $\sin (x+y)$
Here is what i have done so far..
For (X)
a² + b² = c²
1² + (-2)² = c²
1 +4 = c²
√5 = c²
For (Y)
a² + b² = c²
1² + b² = 2²
1 + b² = 2²
√b² = √3
√5 = c²
From here
sin (x+y)
sinx cosy + cosx sin y
= (-2/√5)(1/2) + (1/√5)(√3/2)
= (-2/2√5) + (1√3/2√5)
= -2+√3/√5 x √5/√5
= -2√5+√15/2√25
i got lost at this point
Answer
$$1+\tan^2 x=\sec^2 x$$ so
$\sec^2 x=5$ this means that $\cos x =\frac{1}{\sqrt{5}}$ since $x$ is fourth quadrent.
$$\sin x =\tan x \cos x = -\frac{2}{\sqrt{5}}$$
Also $\sin^2 y +\cos ^2 y=1$ gives $\sin y=\frac{\sqrt{3}}{2}$
So
$$\sin(x+y)=\cos(y)\sin(x)+\cos(x)\sin(y)=-\frac{2}{\sqrt{5}}\frac{1}{2}
+\frac{1}{\sqrt{5}}\frac{\sqrt{3}}{2}=\frac{\sqrt{3}-2}{2\sqrt{5}}$$
No comments:
Post a Comment