Tuesday, 15 September 2015

algebra precalculus - Find $sin(x+y)$, given $tan x$ and $cos y$



Given that $\tan x= -2$ and $\cos y= 1/2$ where $x$ and $y$ are in the 4th and 1st quadrants respectively. Find, without evaluating angles $x$ and $y$,



a) $\sin (x+y)$



Here is what i have done so far..



For (X)




a² + b² = c²



1² + (-2)² = c²



1 +4 = c²



√5 = c²



For (Y)




a² + b² = c²



1² + b² = 2²



1 + b² = 2²



√b² = √3



√5 = c²




From here



sin (x+y)



sinx cosy + cosx sin y



= (-2/√5)(1/2) + (1/√5)(√3/2)



= (-2/2√5) + (1√3/2√5)




= -2+√3/√5 x √5/√5



= -2√5+√15/2√25



i got lost at this point


Answer



$$1+\tan^2 x=\sec^2 x$$ so
$\sec^2 x=5$ this means that $\cos x =\frac{1}{\sqrt{5}}$ since $x$ is fourth quadrent.



$$\sin x =\tan x \cos x = -\frac{2}{\sqrt{5}}$$




Also $\sin^2 y +\cos ^2 y=1$ gives $\sin y=\frac{\sqrt{3}}{2}$



So
$$\sin(x+y)=\cos(y)\sin(x)+\cos(x)\sin(y)=-\frac{2}{\sqrt{5}}\frac{1}{2}
+\frac{1}{\sqrt{5}}\frac{\sqrt{3}}{2}=\frac{\sqrt{3}-2}{2\sqrt{5}}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...