Tuesday 29 September 2015

real analysis - convergence radius of two specific power series




I did two calculations that I think are wrong but I am not sure why.



I have to compute the convergence radius of the following power series



a) $\sum_0^{\infty} \ln(k!)x^k$,



b) $\sum_0^{\infty} k8^kx^{3k}$.



Here's my attempt:




a)



$$ \limsup_{k \rightarrow \infty} \sqrt[k]{a_k} = \limsup_{k \rightarrow \infty} \sqrt[k]{\ln(k!)} = \ln (\limsup_{k \rightarrow \infty} \sqrt[k]{k!})= \infty. $$



Therefore the convergence radius should be $0$ and the series only converges for the value $x=0$. Unfortunately, Wolfram alpha gives me another answer. Where's the mistake ?



b)



$$ \limsup_{k \rightarrow \infty} \sqrt[k]{a_k} = \limsup_{k \rightarrow \infty} \sqrt[k]{k8^k} = \limsup_{k \rightarrow \infty} \sqrt[k]{k} \sqrt[k]{8^k} = 8 \limsup_{k \rightarrow \infty} \sqrt[k]{k} = 8. $$




I would now conclude that the convergence radius is $\frac{1}{8}$, but it appears to be $\frac{1}{2}$, what did I miss ?



Thank you for your help.


Answer



For a) you have made the error of assume the log and the exponent commute. That is $$\ln \sqrt[k]{k!} \ne \sqrt[k]{ \ln k!}$$ and hence $$ \limsup_{k \to \infty} \sqrt[k]{ \ln k!} \ne \ln \left( \limsup_{n \to \infty} \sqrt[k]{k!} \right)$$
I have to disagree with the other answer on how to evaluate this limit (after the error). Using Stirling's approximation gives $$ \sqrt[k]{k!} \sim \sqrt[k]{ \sqrt{2 \pi k} \left( \frac{k}{e} \right)^k } = \left(2 \pi k \right)^{\frac{1}{2k}} \frac{k}{e} \to \infty$$



Of course the actual problem was the one I pointed out before. Here's how I would attack it.
$$\lim_{k \to \infty} \sqrt[k]{ \ln k!}=\lim_{k \to \infty} \frac{ \ln (k+1)!}{\ln (k!)}=\lim_{k \to \infty} \frac{\sum_{j=0}^{k+1} \ln j}{\sum_{j=0}^{k} \ln j}=\lim_{k \to \infty} \frac{\ln (k+1)}{\ln k}=1$$ Note I used the Stolz–Cesàro theorem in the third equality.




I agree with the other answer for (b). You missed the $3k$ in the exponent


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...